

4th Workshop on Big Data Benchmarking

MPP SQL Engines: architectural choices and their implications on benchmarking

09 Oct 2013 Agenda:

Big Data Landscape Market Requirements Benchmark Parameters Benchmark Wish List Some Results

Ravi Chandran, CTO & Co-Founder

ravi.chandran@xtremedata.com

847-224-8907

Decades of experience designing high-performance computing systems: ASICs, DSPs, x86 clusters, embedded RTOSes, Linux ...

... definitely not a database benchmark expert!

- HD, NoSQL and SQL all have a place in big data domain
- SQL engines are good at integrating structured data from multiple sources and complex, iterative analytics
- Example: Twitter & Blog data captured in HD; key info extracted and fed into SQL analytic DataWarehouse

Big Data: Hardware Platform

 All big data solutions need to deploy on this infrastructure

Hardware Infrastructure

Hardware infrastructure in today's converged data center: server-storage-network

- All servers today are (more or less) equal...
- All storage configurations (for big data) are equal local attached, distributed
- All storage options are equal: multi-tiered: DRAM, Flash, Disk
- Network is much more interesting ...
 - Step function, not continuous : 1 or 10 gigE, DDR or QDR IB ...
 - Switches have a range of capabilities:
 - Bi-section bandwidth
 - Lane throttling / bandwidth guarantees
 - NICs also have a range of capabilities:
 - Lane throttling / bandwidth guarantees

- Well-understood by 100's of 1000's worldwide
- Large, mature ecosystem of tools
- Portable code

Most important (from our POV):

Declarative language: can parallelize/optimize at run-time

SQL: requirements for big data analytics

- Run efficiently in parallel (MPP) on converged hardware
- Scale-out at large scale: distributed, shared-nothing architecture
- Tackle the "hard" problems at scale: Large table multi-way Joins, Group-Aggregates, Window Functions

Example:

- In both Wall Street and Digital Advertising, there is a daily deluge of multiple data streams: Bids, Impressions, Clicks; Quotes, Orders, Trades,
- Not unusual for Billions of rows/day & TBs/day
- Need to correlate data between multiple streams: multi-way Joins

Components of a DB Engine:

TREMEDATA

- **postgreSQL:** common starting point for many of us
- Code is monolithic, single-threaded, single-node, ...

Challenges: How to increase scalability & performance of postgreSQL?

- Scalability via parallelism is possible at many different levels: Sharding, Federated, True-MPP, ..
- Performance improvement requires significant code rewrite...

Sharding:

The higher the level at which parallelism is implemented, the higher the overhead: more hardware required to do the same job.

Parallelism

Parallelism: the N² problem

- Most general scenario: Join two large tables:
- Tables distributed across nodes at "random" w.r.t. Join key
- N-to-N re-distribution of data is unavoidable ... N²
- Okay for small N...
- If N is dictated by # of Cores, rapidly becomes unmanageable:
 256 Cores in a single rack today ...

dbX: Product Highlights

- Full-featured SQL, scale-out, deployable in the Cloud
- High-speed parallel ingest
- High-performance querying across multiple large tables
- Scale out to 100's of Nodes and 100's of TBs
- "Logical Node" concept can be mapped to many physical configurations

Implications for benchmarks: H/W

Assessing underlying hardware:

- Servers:
 - CPU capability (# of Cores)
 - Memory size and bandwidth
 - Network bandwidth
- Storage:
 - # of tiers
 - size and bandwidth for each tier
- Network:
 - Topology: point-to-point latency
 - Switch bisectional bandwidth

Assessing SQL engine (big data analytics):

- Functionality:
 - SQL language support
 - Partitions, Indexes, Cursors, Window Functions
- Performance:
 - Parallel load from external source
 - Single table tests:
 - Scan-Filter-Complex compute
 - Group-Aggregate
 - Window Functions
 - Multi-table tests:
 - Joins
 - Joins + all of the above
 - Table creation within DB (CTAS) for data-intensive, iterative processing

Would be great if benchmark for big data analytics could:

- Combine assessment of hardware and SQL engine
- Scale DB size while holding system size constant
- Scale system size holding DB size constant

We have made an attempt at this ... merely a starting point ...

- Written completely in portable SQL
- Data generation and tests
- ~50 queries in ~6 groups
- Multiple DB sizes: typically use 6 scale factors
- L0:5 ranging from 0.33 to 10.56 TB for DB size

Largest Table:			
# Rows (000's)	Size, GB	DB Size, GB	ScaleFactor:
524,288	165.000	330.00	L0
1,048,576	330.000	660.00	L1
2,097,152	660.000	1,320.00	L2
4,194,304	1,320.000	2,640.00	L3
8,388,608	2,640.000	5,280.00	L4
16,777,216	5,280.000	10,560.00	L5

Deficiencies:

- Synthetic data with known, fixed distribution
- All tables have same column schema
- Each new table is 2x previous table
- SQL data generation (INSERT) can be slow!

Proven useful for us, provides a lot of data on both hardware and software ... but still, merely a starting point ...

Benchmark developed by K.T.Sridhar & Sakkeer Ali of XtremeData

- Benchmark has been run on many, many hardware platforms, a sample:
 - dbX-x: Commodity rack-mount servers with InfiniBand network
 - SeaMicro: dense mesh of Atom CPUs (<u>http://www.seamicro.com/products/sm15K_overview</u>)
 - HP-980: High-end HP DL980 8xCPU server plus SSD or SAN

	dbX-1	dbX-2	SeaMicro	HP-980-SSD	HP-980-SAN	dbX-8
CPU type	Nehalem	Xeon	Atom	Xeon	Xeon	Opteron
Storage type	Direct-attached	Direct-attached	NAS	SSD	SAN	Direct-attached
Network	InfiniBand	InfiniBand	10GigE	Fiber	FC	InfiniBand

Sample Results: Hardware-CPU

• For CPU-limited queries (c2 and c5: Group, Join, Distinct in Benchmark), performance correlates well with CPU power.

	dbX-1	dbX-2	SeaMicro	HP-980-SSD	HP-980-SAN	dbX-8
CPU Core type	Nehalem	Xeon	Atom	Xeon	Xeon	Opteron
Clock Speed, Ghz	3.3	2.4	1.9	2.26	2.26	2.4
# Cores	6	6	1	8	8	4
# Sockets	2	4	55	8	8	16
Total, Ghz	39.60	57.60	104.50	144.64	144.64	153.60

• For Disk-limited queries, (b1, b2 and b3: 2, 3 and 4 Tables Joins in Benchmark), performance correlates well with Disk bandwidth.

Sample Results: Software

Questions?

Ravi Chandran, CTO & Co-Founder

ravi.chandran@xtremedata.com

847-224-8907